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The isotropic correction to the Maxwell electron distribution func- 
tion in a two-temperature completely ionized plasma was obtained in 
[1] by the direct solution of the kinetic equation for electrons. In 
this article, such a correction is found by the direct solution of the 
kinetic equation for electrons. In this article, such a correction is 
found by the Chapman-Enskog method [2] applied to a two-tempera- 

ture plasma [3]. This makes it possible to obtain corrections to the 
distribution functions for both electrons and heavy particles. The case 
of a partially ionized plasma is considered, and an expression is ob- 

tained for the rate of energy exchange betweeq electrons and heavy 
particles for an arbitrary interaction law with allowance for the first 
corrections. 

Let us represent tile isotropic part of the distribution function in 
the form 

/ = = I ~  D.  (13 

Here ~ is the Maxwell distribution function for particles of type 
ix and the subscript ix = 1, 2, 3, respectively, for singly-charged ions, 
electrons, and neutrals. The electron temperature T 2 differs from the 
heavy particle temperature T = T 1 = Ts.  Using the solution of [31 
we obtain a system of equations for Fez: 

~] Ja~ (In ~ ]t~ ~ = I a (Fa) ( a = i ,  2, 3) .  (2) 

Integrals for JixB and Iix are given in [3]. System (2) is solved in 
the form of a series expansion in Sonine polynomials S!~, ) (x), [2]: 

F a = ~j  garS% (r) (us") . 
r ~ 2  

(3) 

Here uix is the dimensionless particle velocity in a coordinate 
system moving with the center of inertia of the mixture. The expan- 
sion begins with the second polynomial, so that the corrections do not 
affect the density nix and temperature Tix. Leaving one polynomial 
in the expansion (3), we obtain a solution in the form 

g~, = -Sly-O,, g,2 = ~ - ,  g~z c,-7~sOa (4) 
C22 C22 2~ 
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kit:re tile mass of the ions and neutrals is considered to be the 
same, i . e . ,  m = m I = ms, where e is the absolute magnitude of the 
electron charge, k is the Boltzmann constant. The interaction between 
the charged particles is of the coulomb type, while for the interaction 
between neutrals Lennard-Jones potential is assumed. Calculations for 
this potential and tables for ~r and o are given in [4]. We also 
have 

(n 2 @. n3 ) .E= z ~k2a{l)(t) - -  ~ :a  (1) (2) , 

z2 = 16 [Zf~a(1)(2) - -  fl23 (2) (2)1 , 
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Integrals for fl=(~) 0~) are given in [3]. tn (5) quantities ~ (ms/m) 
in comparison with unity are neglected, and in (6) quantities ~ (ms/  
/m) I. If interaction between neutrals and charged particles is taken to 
be Maxwellian, then 

zx----- 0, z 2 = t9 .2 ,  z z =  5.35, z 4 = 1.7, z6 = - -  z s = ~ = t 9 . 9 .  

The quantities 91 and ~o z are estimated in [3]. It follows from 

(4)-(9) that the law of interaction between electrons and neutrals 
has a strong effect on the magnitude and sign of the isotropic correc- 
tions. Using the definition of the energy exchange rate Qz = - Q1 - 
- Qs given in [3] and relations (1)-(3), we obtain 

Q,a := Q21 + Q2s (10) 
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- -T  [ / ~  5--O(1 , l ]~2(1) (3)]} n2nl T~ ~(x) (1) -- 2 --32 (2) + 

(a = l, 3) ; 

taking into account the first correction to the isotropic distribution 
function and neglecting quantities ~ (mz/m) s 

Q.d = 16,~,~ , ~  ,~ k (T.-- r~) a~#" (t). (11) 
a /3,' 

A general expression for Q~B was obtained in [5] in di f ferent 
form. For the elastic sphere model, the results of [5] coincide with 
(11), while for Coulomb interaction (11) coincides with the result 
of [6]. For a completely ionized plasma, we have from (10) and (11) 

• 

Integrals for [~(~) (q) for Coulomb interaction are evaluated [2]. 
For a quasi-neutral plasma, expression (12) is in good agreement with 
the more accurate result obtained in [1]. Instead of the complex func- 
tion r determined in [1], we have the function 

t mT,~ 
~(z) -- I q- (69/4 I/2x) ' X=rn~ T" (13) 

The difference between the values of the functions ~0(x) and r 
is clear from the table given below: 

x = t 0  20  30  40  100 
=0.32 0.52 0.62 0.7 0.9 t 

(p=0.45 0.63 0 .71  0.77 0.9 t , 

We note that in the hydrodynamic approximation, the magnetic 
field does not affect the isotropic correction. 

For Coulomb interaction with mcJmtt  << 1, expression (11) re- - 
duces to the Landau formula [7]. The result in [5] for Coulomb inte- 
reaction does not agree with [6, 7]. This was pointed out in [8], where 
a rough estimate was obtained for the general expression for the energy 
exchange rate for multitemperature Maxwell distributions. 
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